

MAJOR HEALTH-RELATED CHALLENGES OF MALARIA IN NEPAL

Shreejana Bhattarai & Jacqueline De La Cruz

Malaria

- Vector borne disease
- Severe and often life threatening
- In 2018, 228 million cases and 405,000 deaths worldwide (WHO, 2019)

Malaria in Nepal

- Nepal - a malaria endemic country
- Significant cause of morbidity and mortality in early 20th century.
- Mostly endemic in Terai
- Control interventions with DDT
- After control interventions, malaria decreased and migration in Terai.
- Renewed global interest
- Introduction of Long Lasting Insecticidal Nets (LLIN)
- Malaria decreasing again thereafter

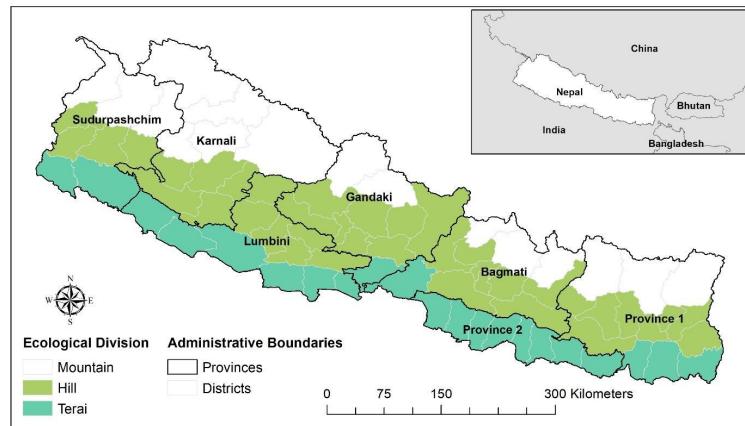
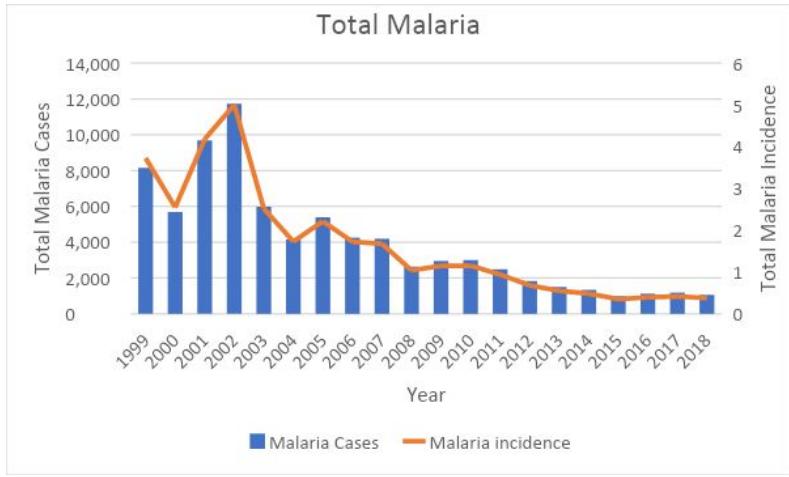
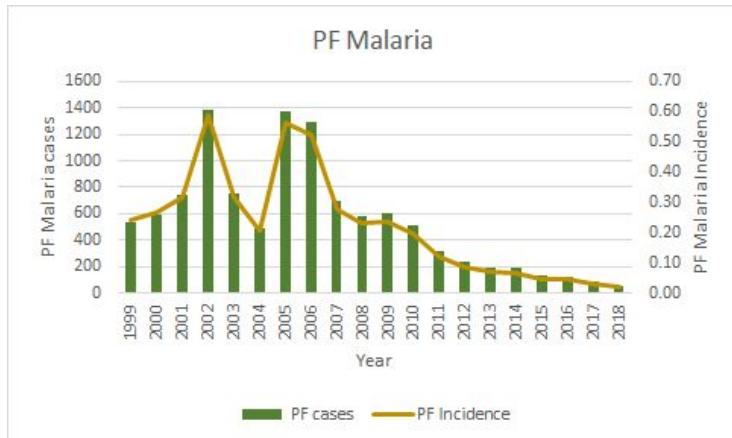
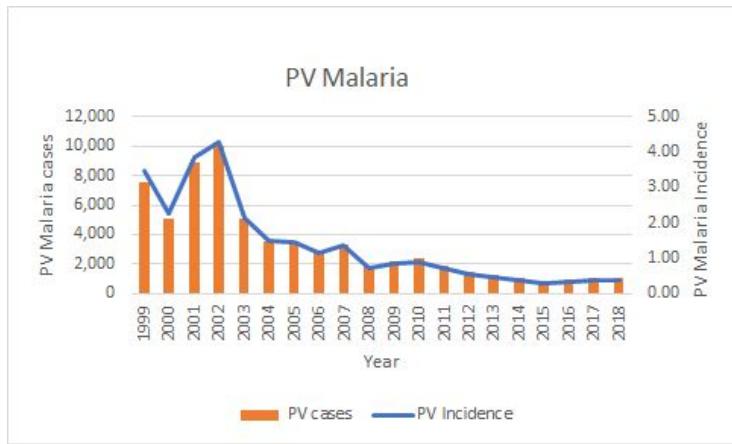





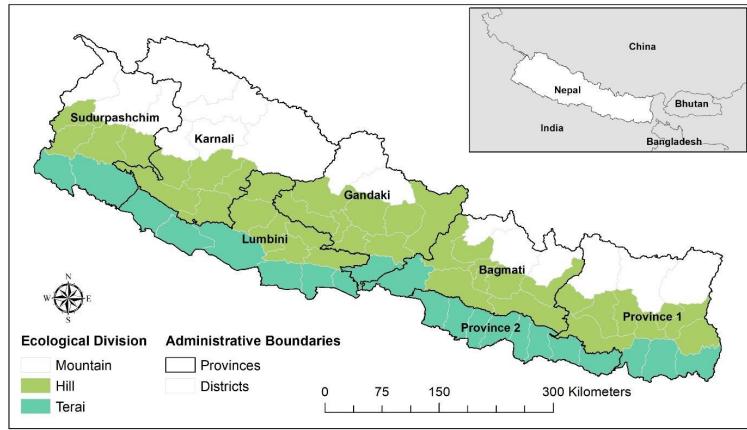
Figure: Major Ecological and Administrative Division of Nepal

Malaria Epidemiology in Nepal

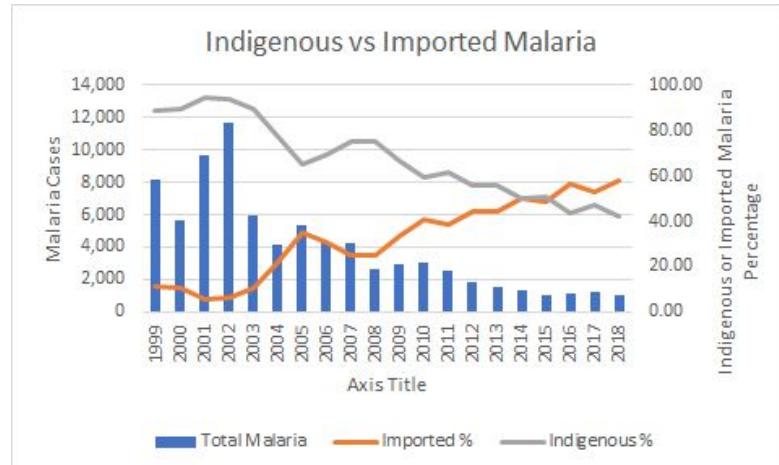
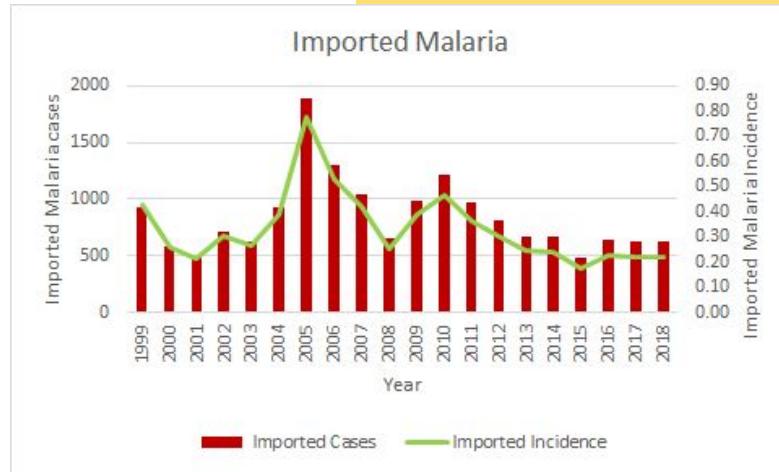
- *Plasmodium vivax* and *Plasmodium falciparum*
- Total Malaria: 8149 (3.73) - 1064 (0.38)
- PV Malaria: 7579 (3.47) - 1012 (0.36)
- PF Malaria: 529 (0.24)-53 (0.02)

Malaria and Migration

- Significant number of people migrate
- Migrate workers is crucial to national economy
- Popular destinations are India, Malaysia, and Gulf countries including Qatar, Saudi Arabia, United Arab Emirates
- India and Non-india


Table 1

International Migration and Remittance



Year	Migration / Population	Remittance Income	% GDP	
	All	India	Non-India	
1961	3.49			
1981	2.68	2.48	0.19	
1991	3.56	3.17	0.37	1.5
2001	3.41	2.61	0.78	2.4
2011	7.43	2.8	4.63	22.4

Note. From Shrestha, M. (2017). *Push and Pull: A Study of International Migration from Nepal*. The World Bank.
<https://doi.org/10.1596/1813-9450-7965>

Malaria and Migration

- Imported Malaria: 928 (0.42) to 618 (0.22)

Health Systems and Delivery

Malaria health systems

- Diagnosis, treatment and drugs are free in all public health institutions
- Passive surveillance is predominant
- Monthly malaria cases reported from Sub-Health Post and Health Post
- District Health Office report to Epidemiology and Disease Control Division (EDCD) through Health Management Information System (HMIS)
- Weekly early warning reporting system (EWARS)
- Diagnosed by microscopy and Rapid Diagnostic Test (RDT)

Delivery of control interventions

- Indoor Residual Spraying (IRS)- primary vector control intervention in the 1950s
- Since, 2004, LLIN with support from Global Fund for AIDS, Tuberculosis and Malaria (GFATM)
- LLIN distributed in high malaria risk areas with the rate of 1 LLIN every 2 people in the household through mass distribution
- Also to pregnant women during Antenatal care visit
- IRS is sprayed during outbreak

Land Use Land cover and Malaria

- Land Use Land cover (LULC) influence malaria incidence and transmission
- LULC variables: forests, water bodies and agricultural practices such as rice cultivation
- Forests in Nepal

(Bhattarai et al., 2020)

LULC 2000		
Malaria incidence rate (MIR)	Relationship	Significant LULC variable (p<0.05)
2000	-	-
2001	Positive	Water bodies, Rice paddies
2002	Positive	Water bodies, Rice paddies
2003	Positive	Water bodies, Rice paddies

LULC 2010		
2010	Negative	Grassland
2011	Not significant	-
2012	Not significant	-
2013	Not significant	-

Climate Change and Malaria

- Climate change has mixed effects on malaria (IPCC 2007)
- 1°C increase in minimum temperature increased malaria incidence by 27% in a study in Dhangadi and Morang districts in Nepal (Dhimal et al., 2014)
- In Jhapa, malaria cases increased with a minimal increase in temperature and a considerable decrease in total rainfall (Bhandari et al., 2013)
- malaria hotspots have shifted to new VDCs (Village Development Committee) within the Morang district (Dhimal, *et al* 2014)
- malaria incidence increased in recent years, particularly in the hills and mountains of Nepal(Badu, 2012)

Health Behaviors

CONTROL EFFORTS

Improved coverage for early diagnosis and prompt treatment.

USE OF LLINs & ITNs

Between 2009-2013, almost 90% LLIN coverage achieved via the National Malaria Control Program.

REDUCING MALARIA BURDEN IN NEPAL

KNOWLEDGE & PRACTICE

Misperceptions and lack of knowledge about malaria are still widespread among vulnerable and high risk populations

BEHAVIOR CHANGE COMMUNICATION

Significant role in the adoption, adherence, and return on investment for control efforts.

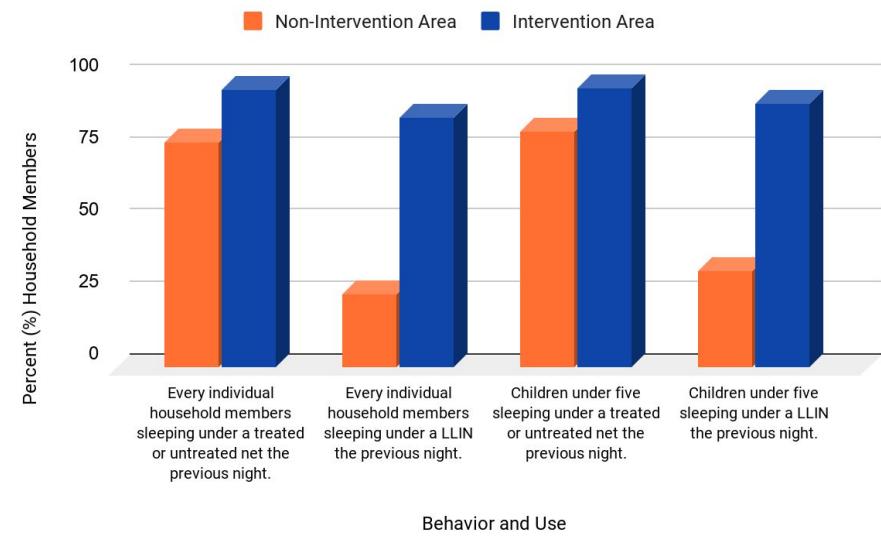

Health Behaviors

Table 2

Behavior and Use Indicators of LLINs in 2009

Behavior or Use	Non-Intervention	
	Area N=2375	Intervention Area N=1600
	% (n)	
Every individual household member slept under a treated or untreated net the previous night.	78.9 (13306)	96 (9019)
Every individual household member slept under a LLIN the previous night.	25.2 (13306)	86.6 (9019)
Children under five sleeping under a treated or untreated net the previous night.	81.7 (1480)	96.7 (1008)
Children under five sleeping under a LLIN the previous night.	33.3 (1480)	91.5 (1008)

Behavior and Use Indicators of LLINs in 2009

Note. P-value for all indicators shown $p < .001$. Data from PSI Research Division.

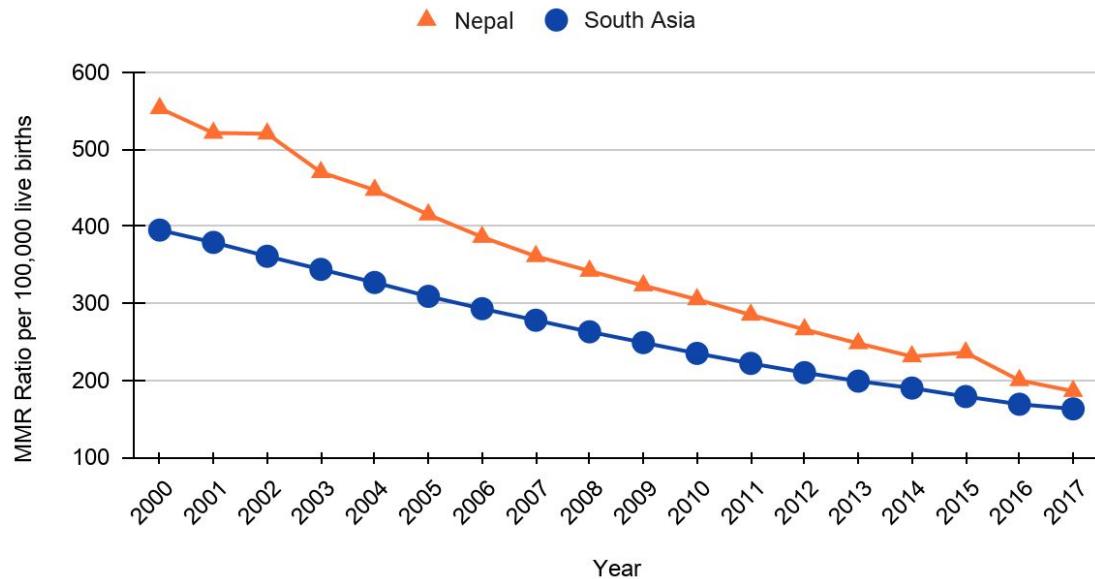
(2009). Nepal (2009): Malaria TRaC study evaluating LLIN use among general population and children under 5 years of age in 13 high-risk districts 1st round.

Population Services International.

Health Behaviors

MIGRANT AND MOBILE POPULATIONS (MMPs)

- LLIN usage was infrequent among adult male laborers in MMPs
- Imported cases are increasingly contributing to local malaria transmission
- 2016 cross-sectional study by Smith et al. (2019)
 - ***"Had not heard of malaria"*** ($p = 0.06$)
 - 68.8% of MMPs social contacts
 - 53.8% of imported cases
 - ***"No knowledge of malaria symptoms"*** ($p < .0001$)
 - 48.3% of imported cases
 - 75.0% of MMPs social contacts
 - Adult male laborers self-reported infrequent usage during travel (20%)
 - Limited knowledge about obtaining bednets or absence during regular home distributions of bednets


Maternal & Reproductive Health

REDUCED MATERNAL MORTALITY RATIO

Since 2000, Nepal has reduced MMR from **553** to **186** per 100,000 in 2017

↓ 64%

Maternal Mortality Ratio per 100,000 live births

Data Source. WHO, UNICEF, UNFPA, World Bank Group, and the United Nations Population Division. Trends in Maternal Mortality: 2000 to 2017. Geneva, World Health Organization, 2019

Maternal & Reproductive Health

SAFE MOTHERHOOD PROGRAM

- Reduce maternal mortality ratio (MMR).
- Improve M&N health outcomes
- Reduce M&N morbidity and mortality
- Family planning services
- Regular antenatal care visits
- Develop & improve obstetrician infrastructure
- Increasing institutional delivery

1997

FOUR ANC VISITS

2011-2016 (DHS surveys)
From **59.0%** to **73.7%** among Nepali women

↑ **14.7%**

↑ **21%**

INSTITUTIONAL DELIVERY

2011-2016
From **39.2%** to **60.2%**
among Nepali women for their last child born

Maternal & Reproductive Health

MALARIA AND ANEMIA

- **Pregnant** women and women of **reproductive age** are at an **increased risk** due to reduced immunity.
- **Pregnant women** face a **double burden**; **placental sequestration** increases risk of maternal morbidities:
 - Microcytic anemia, congestive heart failure, folic acid deficiency, stillbirth, and premature delivery
- **Risk factors for women of reproductive age** include:
 - rural residence,
 - poor nutritional status,
 - little autonomy over decision-making in their health.

Gender & Women's Empowerment

MALARIA AND WOMEN'S AUTONOMY

- **Women's autonomy** is an indicator of:
 - ◆ Maternal and child health outcomes
 - ◆ Access to wealth
 - ◆ Social and material resources
- **Feminization of Nepal's agricultural workforce** has led to increased autonomy in economic and decision-making roles among Nepali women.
- **Increased autonomy** is important to make purchases (i.e., health services, travel to health facility) to improve health outcomes and quality of life

Gender & Women's Empowerment

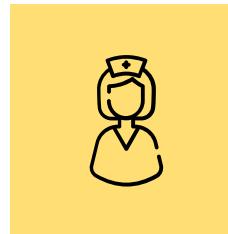
MALARIA AND WOMEN'S AUTONOMY

- Acharya et al. (2010) - greater autonomy over healthcare decision-making among Nepali women
 - ◆ Increased with age
 - ◆ Higher in urban regions
 - ◆ Employed for an income
 - ◆ 3+ children
 - ◆ Higher education

Characteristics	Own Health Care (%)
Age	
15-19	17.0
20-24	37.1
25-29	38.5
30-34	52.0
35-39	55.2
40-44	58.6
45-49	60.3
Employment (past 12 months)	
Not employed	43.5
Employed for cash	59.6
Employed for subsistence	41.4
Number of living children	
0	21.9
1-2	45.2
3-4	53.7
5+	55.0
Residence	
Urban	54.6
Rural	45.8
Education	
No education	47.4
Primary	44.7
Some Secondary	45.0
SLC and above/higher	55.8

Gender & Women's Empowerment

MALARIA, GENDER, & CONFLICT

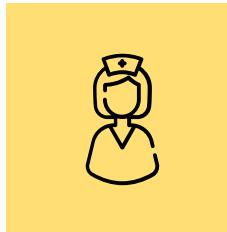

Maoist conflict.

- Observed increase in economic participation among Nepalese women.
- Infrastructure challenges increased barriers to access necessary health services, support, and other resources.
- Increased barriers for Nepali women in rural areas.
- ***Post-conflict.*** Resurgence of discriminatory gender practices and beliefs.
 - ◆ Citizenship registration necessary for various services and benefits

Demographic Transition & Malaria

Nepal's Demographic Transition Profile

- Made significant improvements since the 1980s
- **Rapid decline** in crude birth and crude death rate
- Exponential **increase in population** growth rate
- Improved **life expectancy**
- **Unlike** the Western four-stage model
- Considered a **least developed country** (UN criteria)



Demographic Transition & Malaria

CRUDE BIRTH RATE

1980-2018

From **41.7** to **19.8 per 1000**

LIFE EXPECTANCY AT BIRTH

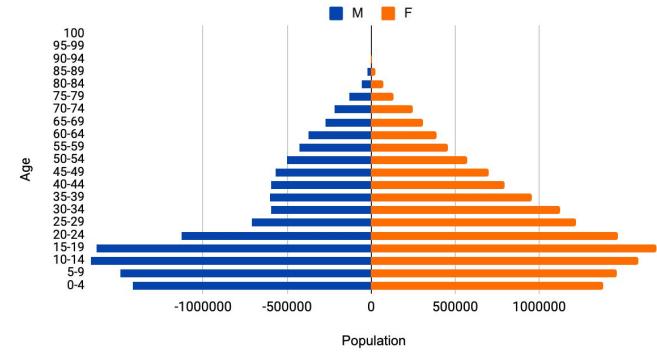
1980-2018

From **46.7** to **70.5 years**

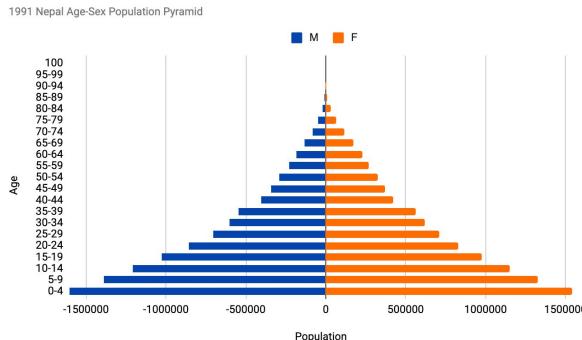
CRUDE DEATH RATE

1980-2018

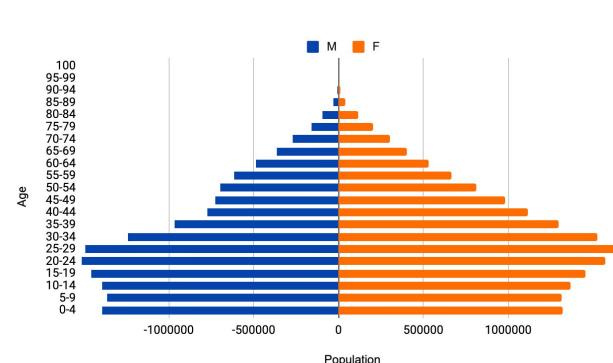
From **17.9** to **6.4 per 1000**


NET MIGRATION

1980-2017

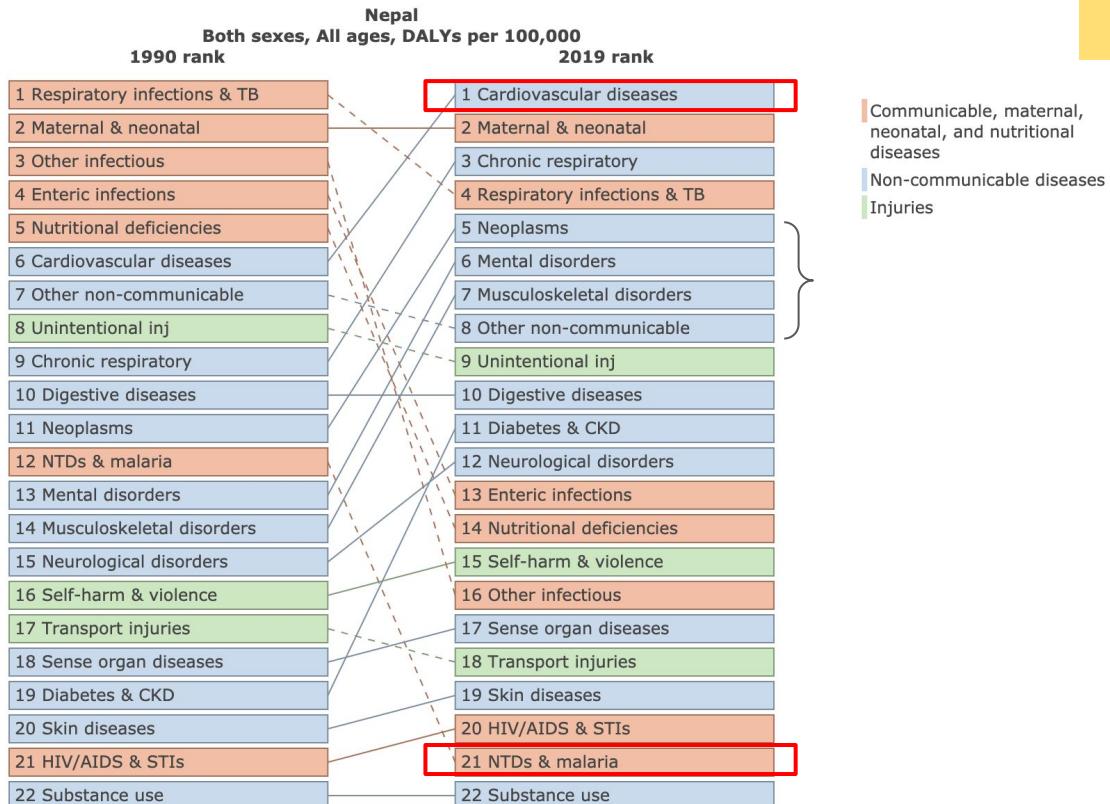

From **-101,147** to **-2 million**

Demographic Transition & Malaria


- 1980-90s - renewed interest in malaria control
- 1991 - National Health Policy
- 1997 - Safe Motherhood Program
- 2004 - National Nutrition Policy
- 2012 - Health Communication Policy

2015

1991


2025

Non-Communicable Diseases & Malaria

DALYs

Disability-Adjusted Life Years

- Cardiovascular disease ($\uparrow 12.54\%$), chronic respiratory ($\uparrow 13.9\%$), musculoskeletal disorders ($\uparrow 45.08\%$)
- Maternal and neonatal, same rank, but significant improvement, about **75% decrease**
- (2019) Malaria still among the major causes DALYs
- HIV/AIDS & STIs ($\uparrow 16.32\%$)

Source. Institute for Health Metrics and Evaluation (IHME). GBD Compare. Seattle, WA: IHME, University of Washington, 2015. Available from <http://vizhub.healthdata.org/gbd-compare>.

Non-Communicable Diseases & Malaria

YLLs

Years of Life Lost

- Since 1990, YLLs for malaria have decreased; from about **94k** to **61k YLLs** in 2010.
- In 2017, YLLs from malaria decreased to **59k**.
- YLLs for ischemic heart disease increased by 95%

Table 3

Years of Life Lost Among Major Causes of Death from NCDs and Malaria

Cause of Death	1990		2010		2017	
	% YLL	(n) YLL in thousands	% YLL	(n) YLL in thousands	% YLL ^a	(n) YLL in thousands ^a
Ischemic heart disease	1.2	142	3.8	277	11.34	663
COPD	2.4	287	3.5	249	5.51	322
Intracerebral hemorrhage	0.96 ^a	562			2.7	158
Ischemic stroke	1	126	2.9	212		
Malaria	0.8	94			40.47 ^b	59 ^b

Note. From the IHME (2010) GBD profile report on Nepal.

^a From the Ministry of Health (2019) Nepal Burden of Disease (NBoD) report.

^b Derived from the Ministry of Health (2019) NBoD report. Malaria was aggregated with neglected tropical disease.

Double or triple burdens of existing infectious diseases and NCDs.

Thank You!

References

Acharya, D. R., Bell, J. S., Simkhada, P., van Teijlingen, E. R., & Regmi, P. R. (2010). Women's autonomy in household decision-making: A demographic study in Nepal. *Reproductive Health*, 7(1), 15. <https://doi.org/10.1186/1742-4755-7-15>

Adhikari, S. R., Sapkota, V. P., Thapa, A. K., & Acharya, Y. (2019). Understanding challenges to malaria elimination in Nepal: A qualitative study with an embedded capacity-building exercise. *Malaria Journal*, 18(1), 437. <https://doi.org/10.1186/s12936-019-3081-7>

Aryal, K. K., Sharma, S. K., Khanal, M. N., Bista, B., Kafle, S., & Steffen, M. M. (2019). *Maternal health care in Nepal: Trends and determinants. DHS further analysis reports no. 118.* (No. 118). The Demographic and Health Surveys Program. <https://dhsprogram.com/pubs/pdf/FA118/FA118.pdf>

Arrow, K. J., Panosian, C., & Gelband, H. (2004). The Human and Economic burden of Malaria. In *Saving lives, buying time economics of malaria drugs in an age of resistance*. Washington, D.C.: National Academies Press. <https://www.ncbi.nlm.nih.gov/books/NBK215634/>

Awasthi, K., Adefemi, K., Awasthi, M., & Chalise, B. (2018). Public Health Interventions for Control of Malaria in the Population Living in the Terai Region of Nepal. *Journal of Nepal Health Research Council*, 15(3), 202-207.

Badu, M. (2012). Assessing The Impact Of Climate Change On Human Health: Status And Trends Of Malaria And Diarrhea With Respect To Temperature And Rainfall Variability In Nepal. *Kathmandu University Journal of Science and Technology*, 8(1), 134–141.

Baral, O. P., & Vashisth, K. (2014). Goal, strategies and programme of Safe Motherhood in Nepal. *Academic Voices: A Multidisciplinary Journal*, 3, 19–23. <https://doi.org/10.3126/avv3i1.9981>

Bhadra, C. (2004). *Review of the implementation of the Beijing platform for action and the outcome documents of the twenty-third special session of the general assembly*. Women's Studies Programme. <https://www.un.org/womenwatch/daw/Review/responses/NEPAL-English.pdf>

Bhandari, G. P., Dhimal, M., Gurung, S., & Bhusal, C. (2013, March). Climate Change and Malaria in Jhapa District of Nepal: Emerging Evidences from Nepal. *Journal of Health Management*, 15(1), 141-150. Doi:10.1177/0972063413486026

Bharati K, Ganguly NK, 2013. Tackling the malaria problem in the South-East Asia Region: need for a change in policy? *Indian J Med Res* 137: 36–47.

Caminade, C., & Jones, A. E. (2016). Malaria in a warmer West Africa. *Nature Climate Change*. doi:10.1038/nclimate3095

Central Bureau of Statistics (CBS) (2014). Population monograph of Nepal Volume II. Central Bureau of Statistics, Kathmandu, Nepal. <https://nepalindata.com/resource/population-monograph-of-nepal-volume-ii-social-demography/>

Center for Disease Control (CDC). (2019). *Malaria*. Retrieved from <https://www.cdc.gov/malaria/about/faqs.html> on November, 2020

Department of Health Services (DoHS). (2016). *Annual Report 2073/74 (2016/2017)*. Kathmandu: Department of Health Services, Ministry of Health and Population, Government of Nepal

Dhimal, M., Ahrens, B., & Kuch, U. (2014a). Malaria control in Nepal 1963-2012: challenges on the path towards elimination. *Malaria Journal*, 13, 241

Dhimal, M., O'Hara, R. B., Karki, R., Thakur, G. D., Kuch, U., & Ahrens, B. (2014b). Spatio-temporal distribution of malaria and its association with climatic factors and vector-control interventions in two high-risk districts of Nepal. *Malaria Journal*, 13(1), 457. doi:10.1186/1475-2875-13-457

Epidemiology and Disease Control Division (EDCD). (2016). *Nepal Malaria Strategic Plan 2014-2025*. Government of Nepal, Ministry of Health and Population, Department of Health Services, and Epidemiology and Disease Control Division. http://origin.searo.who.int/nepal/documents/communicable_diseases/nepal_malaria_strategic_plan_2014-25.pdf

Epidemiology and Disease Control Division (EDCD). 2020. Dengue Kalaazar and Malaria Trend Update 2020. Epidemiology & Disease Control Division, Department of Health Services, Ministry of Health & Population, Government of Nepal, Kathmandu.

References

Gautam, N., Kakchapati, S., Shrestha, S., & Wanishsakpong, W. (2019). Patterns and trends of malaria in 25 risk districts of Nepal from 2001 to 2017. *Clinical and Experimental Vaccine Research*, 8(1), 77. <https://doi.org/10.7774/cevr.2019.8.1.77>

Ghimire, P., Rijal, K. R., Adhikari, N., Thakur, G. D., Marasini, B., Thapa Shrestha, U., Banjara, M. R., Pant, S. K., Adhikari, B., Dumre, S. P., Singh, N., Pigeon, O., Chareonviriyaphap, T., Chavez, I., Ortega, L., & Hii, J. (2020). The durability of long-lasting insecticidal nets distributed to the households between 2009 and 2013 in Nepal. *Tropical Medicine and Health*, 48(1), 36. <https://doi.org/10.1186/s41182-020-00223-w>

Government of Nepal National Planning Commission. (2017). *Demographic changes of Nepal: Trends and policy implications*. Government of Nepal National Planning Commission, UNICEF. https://www.popcouncil.org/uploads/pdfs/2017PGY_DemographicChangesNepal.pdf

Ijumba JN, Lindsay SW, 2001. Impact of irrigation on malaria in Africa: Paddies paradox. *Med Vet Entomol*, 15:1-11.

Institute for Health Metrics and Evaluation. (2010). *GBD Profile: Nepal*. https://www.healthdata.org/sites/default/files/files/country_profiles/GBD/ihme_gbd_country_report_nepal.pdf

IPCC. (2007). Climate Change 2007: impacts, adaptation and vulnerability: contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel. Genebra, Suíça. <https://doi.org/10.1256/004316502320517344>

Joshi, A. B., & Banjara, M. R. (2008). Malaria related knowledge, practices and behaviour of people in Nepal. *Journal of vector borne diseases*, 45(1), 44-50.

Karki, B. K. (2018). Policies and Practices of Health Promotion in Nepal. *KMC Research Journal*, 2(2), 107-118. <https://doi.org/10.3126/kmcij.v2i2.29954>

Khaembra BM, Mutani A, Bett MK, 1994. Studies of anopheline mosquitoes transmitting malaria in a newly developed highland urban area: a case study of Moi University and its environs. *East Afr Med J* 71:159-164.

Koenker, H., Keating, J., Alilio, M., Acosta, A., Lynch, M., & Nafo-Traore, F. (2014). Strategic roles for behaviour change communication in a changing malaria landscape. *Malaria Journal*, 13(1), 1. <https://doi.org/10.1186/1475-2875-13-1>

Koudou BG, Tano Y, Doumbia M, Nsanzabana C, Cissé, G, Girardin O, Dao D, N'Goran EK, Vounatsou P, Bordmann G, Keiser J, Tanner M, Utzinger J, 2005. Malaria transmission dynamics in central Côte d'Ivoire: the influence of changing patterns of irrigated rice agriculture. *Med Vet Entomol* 19:27-37.

Lindblade, K. A., Walker, E. D., Onapa, A. W., Katungu, J., & Wilson, M. L. (2000). Land use change alters malaria transmission parameters by modifying temperature in a highland area of Uganda. *Tropical Medicine and International Health*, 5(4), 263-274. doi:10.1046/j.1365-3156.2000.00551.x

Loevinsohn, M. E. (1994). Climatic warming and increased malaria incidence in Rwanda. *Lancet*, 343(8899), 714-718. [https://doi.org/10.1016/S0140-6736\(94\)91586-5](https://doi.org/10.1016/S0140-6736(94)91586-5)

Magar, A. (1970). National Health Policy of Nepal-Time to Revisit and Reform. *Journal of Nepal Medical Association*, 52(190). <https://doi.org/10.31729/jnma.2110>

Ministry of Health and Population. (2019). *Nepal burden of disease 2017. A country report based on the global burden of disease 2017 study*. Ministry of Health and Population, Nepal Health Research Council, IHME, UKAID. http://nhrc.gov.np/wp-content/uploads/2019/04/NBoD-2017_NHRC-MoHP.pdf

Naujoks, J., Myrttinen, H., El-bushra, J., Shrestha, R., Gaertner, H., Karki, S., Joshi, A., Pant, S., Dhakal, M., Knight, K., Hendessi, M., Ismail, O., Khattab, L., Labinski, A., Onslow, C., & Crozier, R. (2014). *Re-assessing gender norms after conflict; Gender in peacebuilding in Nepal*.

Prothero RM, 1999. Malaria, Forests and People in Southeast Asia. *Sing J Trop Geog* 20:76-85.

References

PSI Research Division. (2009). *Nepal (2009): Malaria TRaC Study Evaluating LLIN Use among General Population and Children Under 5 Years of Age in 13 High-Risk Districts 1st round*. Population Services International.

OECD. (2017). *Gender equality and women's empowerment in fragile and conflict-affected situations*. 8, 38. <https://doi.org/10.1787/b75a1229-en>

Rai, S. K. (2018). Changing trend of infectious diseases in Nepal. In R. Adhikari & S. Thapa (Eds.), *Infectious Diseases and Nanomedicine III*, 1052, 19–38. Springer Singapore. https://doi.org/10.1007/978-981-10-7572-8_3

Regmi, K., Kunwar, A., & Ortega, L. (2016). A systematic review of knowledge, attitudes and beliefs about malaria among the South Asian population. *Infection Ecology & Epidemiology*, 6(1), 30822. <https://doi.org/10.3402/iee.v6.30822>

Rijal, K. R., Adhikari, B., Ghimire, P., Banjara, M. R., Hanboonkunupakarn, B., Imwong, M., Chotivanich, K., Ceintury, K. P., Lal, B. K., Das Thakur, G., Day, N. P. J., White, N. J., & Pukrittayakamee, S. (2018). Epidemiology of Plasmodium vivax Malaria Infection in Nepal. In *The American Journal of Tropical Medicine and Hygiene*, 99(3), 680–687.

Ripert CL, Raccurt CP, 1987. The impact of small dams on parasitic diseases in Cameroon. *Parasitol Today* 3:287-289.

Sakya, G. (1981). Present Status of Malaria in Nepal. *Journal of Nepal Medical Association*, 19(4), 21–28.

Sarkar A, Aronson KJ, Patil S, Hugar LB, van Loon GW. (2012). Emerging health risks associated with modern agriculture practices: A comprehensive study in India. *Environ Res*, 115:37-50.

Schantz-Dunn, J., & Nour, N. M. (2009). Malaria and pregnancy: a global health perspective. *Reviews in obstetrics & gynecology*, 2(3), 186–192.

Shrestha, M. (2017). *Push and Pull: A Study of International Migration from Nepal*. The World Bank. <https://doi.org/10.1596/1813-9450-7965>

Siraj, A. S., Santos-Vega, M., Bouma, M. J., Yadeta, D., Carrascal, D. R., & Pascual, M. (2014). Altitudinal Changes in Malaria Incidence in Highlands of Ethiopia and Colombia. *Science*, 343(6175), 1154-1158. doi:10.1126/science.1244325

Smith, J. L., Ghimire, P., Rijal, K. R., Maglior, A., Hollis, S., Andrade-Pacheco, R., Das Thakur, G., Adhikari, N., Thapa Shrestha, U., Banjara, M. R., Lal, B. K., Jacobson, J. O., & Bennett, A. (2019). Designing malaria surveillance strategies for mobile and migrant populations in Nepal: A mixed-methods study. *Malaria Journal*, 18(1), 158. <https://doi.org/10.1186/s12936-019-2791-1>

Spangler, K., & Christie, M. E. (2020). Renegotiating gender roles and cultivation practices in the Nepali mid-hills: Unpacking the feminization of agriculture. *Agriculture and Human Values*, 37(2), 415–432. <https://doi.org/10.1007/s10460-019-09997-0>

University of California, San Francisco (UCSF). (2015). *Eliminating Malaria in Nepal* [PDF file]. California: Gretchen Newby. <https://globalhealthsciences.ucsf.edu/sites/globalhealthsciences.ucsf.edu/files/pub/nepal2015-final.pdf>

UNFPA. (2017). *Population situation analysis of Nepal (with respect to sustainable development)*. United Nations Fund for Population Activities. <https://data.worldbank.org/indicator/SH.STA.MMRT?locations=NP>

Yasuoka J, Levins R, 2007. Impact of deforestation and agricultural development on anopheline ecology and malaria epidemiology. *Am J Trop Med Hyg* 76:450–460.

World Health Organization (WHO). (2011). *Nepal Malaria Programme Review* (7–16 June 2010). New Delhi: World Health Organization Regional Office for South - East Asia.

World Health Organization. (2019). *Trends in maternal mortality: 2000 to 2017* [Data set]. WHO, UNICEF, UNFPA, World Bank Group, and the United Nations Population Division. <https://data.worldbank.org/indicator/SH.STA.MMRT?locations=NP>

World Health Organization (WHO). (2019). *Malaria*. Retrieved from <https://www.who.int/news-room/fact-sheets/detail/malaria> on November, 2020